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In this paper, one-dimensional heat conduction within a thin slab for Knudsen numbers more than 0.1 is
implemented using the Dual-Phase-Lag (DPL) model including phonon scattering boundary condition.
The Dual-Phase-Lag equation is solved with a stable and convergent finite difference scheme. Also the
Laplace transformation technique is employed to solve DPL equation analytically. The results show that
in the smaller values of Knudsen number, the results of the DPL model lay very close to the solution of the
Boltzmann equation. Also, it is shown that moving towards the steady state, the DPL model reduces to the
Cattaneo and Vernotte (CV) model and has results more accurate than the Ballistic-Diffusive Equations
(BDE). It is also shown that the temperature distribution is closer to the results of Boltzmann equation
relative to the heat flux distribution. Due to the simplicity of derivation of the DPL model formulation
and its possibility for developing to higher dimensions, using the DPL model with new boundary condi-
tion is recommended to simulate nano- and micro-scale heat conduction. To investigate the accuracy of
the DPL model, its results are compared with the results obtained from BDE model, and Boltzmann
equation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of self-heating in micro-electronic devices or for
situations involving very low temperature near absolute zero, heat
source, such as laser, heat is found to propagate at a finite speed.
The solution of the Boltzmann equation is the most accurate option
to model heat transfer in such problems. However, the Boltzmann
equation is too difficult to solve in general, so many other models
have been proposed so far to take into account the finite speed of
heat propagation and the effects of boundaries.

One of the best approximations of Boltzmann equation is Ballis-
tic-Diffusive Equations (BDE) derived by Chen [1] in which the heat
transfer is divided at any point into two parts, one represents the
ballistic nature of heat conduction originating from the boundary
scattering of heat carriers, and the other characterizes the diffusive
behavior with heat flux time-lag phenomenon taken into account
only. The BDE approximation shows a good agreement with Boltz-
mann equation in both one and two-dimensional problems as
shown by Chen et al. [2,3].

Another well-known approximation of non-Fourier heat con-
duction is the Dual-Phase-Lag (DPL) model first proposed by Tzou
[4,5]. This model considers only the effect of finite relaxation time
ll rights reserved.
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by using the heat flux and temperature phase lags where the for-
mer is caused by micro structural interactions such as phonon
scattering and the latter is interpreted as the relaxation time due
to fast-transient effects of thermal inertia [6]. However, in many
problems the Cattaneo and Vernotte (CV) model is applied in
which the temperature phase lag is omitted.

In recent years, utilization of Dual-Phase-Lag model to simulate
heat transfer in micro- or nano-structures has been considered by
researchers. One-dimensional problem of heat conduction for the
Knudsen numbers more than 0.1 corresponding to nano-structures
was implemented by Basirat et al. [7] using the Dual-Phase-Lag
(DPL) model and its special case, CV model as well as the Fourier
law. In this paper their results were compared with the results ob-
tained from the BDE model, which considered being an accurate
approximation of the Boltzmann equation. It is observed that in
Knudsen numbers of order of one, the DPL model, including the
real value of the ratio of the temperature to the heat flux time
lag, leads to better results than the CV model. This ratio is consid-
ered to be equal to zero while in the greater values of Knudsen
number, there is no advantage between two approaches. In the
smaller values of Knudsen number the results obtained from the
DPL and CV models match to each other, and lay very close to
the results obtained from the Fourier law.

The transient thermal behavior of a stagnant gas confined in a
horizontal micro-channel was studied analytically under the effect
of the Dual-Phase-Lag heat conduction model by Al-Nimr and
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Nomenclature

B phase-lag ratio
k heat conduction coefficient, W/m �C
L length, m
T temperature, K
x direction, m
CP specific heat, J/kg �C
Kn Knudsen number
q heat flux, W/m2

t time, s

Greek
a BC coefficient and thermal diffusion coefficient, m2/s
h non-dimensional temperature

C mean free path of careers, m
q density, kg/m3

g non-dimensional coordinate
s relaxation time, s

Superscript
� non-dimensional condition

Subscript
b ballistic
q heat flux
m diffusive
t gradient temperature
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Khadrawi [9]. The effects of the Knudsen number Kn, the thermal
relaxation time sq, and the thermal retardation time st on the
micro-channel thermal behavior were investigated using three
heat conduction models. It was found that the deviations between
the predictions of the parabolic and the hyperbolic models are
insignificant. On the other hand, the deviations between the para-
bolic and Dual-Phase-Lag models are significant under the same
operating conditions. In the other study, Khadrawi and Al-Nimr
considered the unsteady hydrodynamics and thermal behavior of
fluid flow in an open-ended vertical parallel-plate micro-channel
semi-analytically under the effect of the Dual-Phase-Lag heat con-
duction model [8]. However, attempts to simulate one-dimen-
sional heat conduction in micro- and nano-scale geometries have
been led to unsatisfying results.

In order to achieve a general model for micro- and nano-scale
heat conduction, in this paper, a new boundary condition is devel-
oped to use along with DPL model to improve the obtained results
of micro- and nano-scale heat conduction. So, heat transfer
regimes for a thin slab has been analyzed by using different values
for Knudsen number which enables a comparison between the
results of DPL model with new boundary condition and the BDE
model. The results are developed for relaxation time ratios
between 0.0, the case of CV, to 0.1, and for Knudsen numbers from
0.1 to 10 to find how accurate the prediction of DPL model
responses in the heat conduction of micro- and nano-structures.

2. Mathematical modeling

Cattaneo [10] and Vernotte [11] suggested independently a
modified heat flux model in the form (CV model),

~qðt þ �sq;~rÞ ¼ �k~rTðt;~rÞ; ð1Þ

where~q is the heat flux vector, k is the thermal conductivity, and �sq

is the phase-lag in the heat flux vector. The constitutive law of Eq.
(1) assumes that the heat flux vector (the effect) and the tempera-
ture gradient (the cause) across a material volume occur at different
instants of time, and the time delay between the heat flux and the
temperature gradient is the relaxation time �sq.

In 1995 Tzou [4] proposed a non-Fourier approximation for heat
conduction in which the heat flux vector at a point in material at
time t þ sq corresponds to the temperature gradient at the same
point at time t þ st , or:

~qðt þ �sq;~rÞ ¼ �k~rTðt þ �sT ;~rÞ; ð2Þ

where �sq and �st stand for the heat flux and temperature gradient
phase lags, respectively, both are positive and intrinsic properties
of the material. Values of the two phase lags like the thermal
conductivity and the thermal diffusivity must be determined exper-
imentally and were tabulated for engineering materials under var-
ious conditions, including the elevated temperature and the same
medium with different microstructures. Tzou [5] has presented
some analytical correlations and Basirat et al. [7] have reported
values for phase lags corresponding to some metal films.

Using Taylor series expansion of Eq. (2) with respect to time
yields:

qþ sq
@q
@t
¼ �k

@T
@x
� st

@2T
@t@x

: ð3Þ

Eq. (3) is combined with the energy equation:

� @q
@x
¼ c

@T
@t
; ð4Þ

where c is specific heat of the material. Eliminating of the heat flux
between above equations, lead to the heat conduction equation un-
der the DPL effect:

@T
@t
þ sq

@2T

@2t
¼ k

c
@2T

@2x
þ st

@3T

@t@2x

 !
: ð5Þ

The Dual-Phase-Lag model allows either the temperature gradient
(cause) to precede the heat flux vector (effect) or the heat flux vec-
tor (cause) to precede the temperature gradient (effect) in the tran-
sient process. There are actually three characteristic times involved
in the DPL model. The instant of time ðt þ stÞ at which the temper-
ature gradient is established across a metal volume, ðt þ sqÞ for the
onset of the heat flow, and the time for the occurrence of the heat
transfer. It is Obvious that Eq. (5) is reduced to the CV equation in
the case of st ¼ 0. It should be noted that the DPL model is capable
of taking about solids, liquids and gases.

To obtain the normalized equations, the following non-dimen-
sional parameters were considered:

h ¼ T � T0

Tw � T0
; t� ¼ t

sq
; B ¼ st

sq
; g ¼ x

L
Kn ¼ k

L
; ð6Þ

where k and L are the mean molecular mean free path and charac-
teristic length, respectively.

Now, Eq. (5) can be rewritten as:

@h
@t�
þ @2h

@2t�
¼ Kn2

3
@2h

@2g
þ B

Kn2

3
@3h

@t�@2g
: ð7Þ

As explained before, Chen [1] developed one-dimensional Ballistic-
Diffusive Equations for phonons which for simplicity was not
included here. In the next section, the results of this model will
be used to verify the accuracy of results of our new model.
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2.1. New boundary condition

All phase-lag models mentioned in the previous sections,
were supposed to be solved with no temperature jumps on the
boundaries. Since, the DPL model neglects the effects of bound-
ary phonon scattering, obtained results with imposing no-jump
boundary condition lead to unsatisfying results especially near
the boundaries. In this section it is to propose a new boundary
condition in which the boundaries are allowed to include tem-
perature jump. The new boundary condition to use along with
the DPL model is as follows;

hs � hw ¼ �aKn
@h
@n�

� �
w

ð8Þ

where hs is the wall’s jumped temperature, hw is the boundary
temperature, and a is a coefficient which should be tuned. Values
of two unknown parameters a and B, should be determined in a
way that results of the DPL model coincides with the solution of
the Boltzmann equation. It was interesting that values of these
parameters were turned out to be independent of the Knudsen
number and merely vary with time and can be computed from
Eqs. (9) and (10).

B ¼
0 t� > 1
0:1t� t� 6 1

�
ð9Þ

a ¼
0:5 t� > 0:1
0:7t� t� 6 0:1

�
ð10Þ

It is worth noting that these equations stem from numerical results
and are appropriate for engineering applications, so they have no
specific mathematical derivations. Since sq > st , the temperature
gradient precedes heat flux vector in the process of heat transport.
However, using these constants along with the Dual-Phase-Lag
model helps us to model heat transfer phenomenon in small struc-
tures with many time scales only with two time scales.

From Eqs. (9) and (10), it was obvious that for the initial time
periods and by moving towards the steady state, the CV model
as a special case of DPL model has been achieved with a ¼ 0
and a ¼ 1

2, respectively. It means that the DPL model and the
CV model are used to simulate transient and steady state behav-
ior of the micro- and nano-scale heat conduction, respectively. In
addition, in the limiting case for a ¼ 0 the new boundary condi-
tions changes to no-slip boundary condition. So, by marching in
time the value of a increases. It means that in initial times,
mixed boundary condition alters to no-slip condition, but by
the increase in time, definition of the new boundary condition
is more vital.

Important limitations of this model are constant physical prop-
erties such as thermal conductivity, thermal diffusivity, and phase
lags, one dimensionality, no heat source, and iso-temperature
boundary condition.
3. Numerical solution

To solve Eq. (5) a second order fully implicit finite difference
scheme was used in which discretization of all derivatives was cen-
tral. In this way, a stable and convergent three-level finite differ-
ence scheme has been used which was introduced by Dai et al.
[12]. It should be pointed out that in this method; a weighted aver-
age was used for stability and convergence. It was observed that
the convergence of the numerical method was improved by
decreasing Knudsen number, so that at high Kn numbers the solu-
tion strongly depends on the marching step size. In addition, a
mesh independency test has been carried out in order to investi-
gate numerical convergence of the results in all above cases which
are not included in the paper.
4. Analytical solution

In this section, Eq. (7) with boundary condition (8) are solved by
using the Laplace transformation technique. Now, with the nota-
tion that Lfhðt�;gÞg ¼ FTðs;gÞ, the Laplace transformation of Eqs.
(7) and (8) yields:

s2FT þ sFT ¼
Kn2

3
d2FT

dg2 þ Bs
Kn2

3
d2FT

dg2 ; ð11Þ

g ¼ 0; FT �
1
s
¼ Kna

dFT

dg
;

g ¼ 1; FT ¼ �Kna
dFT

dg
: ð12Þ

According to the boundary conditions, Eq. (11) is solved to give;

FT ¼ C1 sinhðAgÞ þ C2 coshðAgÞ; ð13Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð1þ sÞ
Kn2

3 ð1þ BsÞ

s
;

C1 ¼ �
1
s

coshðAÞ þ KnaA sinhðAÞ
sinhðAÞð1þ Kn2a2A2Þ þ 2KnaA coshðAÞ

;

C2 ¼
1
s

sinhðAÞ þ KnaA coshðAÞ
sinhðAÞð1þ Kn2a2A2Þ þ 2KnaA coshðAÞ

: ð14Þ

Eq. (13) is inverted in terms of the Riemann-sum approximation as

hðt�;gÞ ¼ e�t
�

t�
1
2

FTð�;gÞ þ Re
XN

n¼1

FT �þ inp
t�

;g
� �

ð�1Þn
" #( )

; ð15Þ

where Re refers to the ‘‘real part of” and i2 ¼ �1 is the imaginary
number, N is the number of terms used in the Riemann-sum
approximation, and � is the real part of the Bromwich contour that
is used in inverting Laplace transforms. The Riemann-sum approx-
imation for the Laplace inversion involves a single summation for
the numerical process. For faster convergence, however, numerous
numerical experiments have shown that a value which satisfies the
relation �t� ¼ 1:3, gives the most satisfactory results [9].

5. Results and discussions

The numerical simulation of the above equations are presented
in Figs. 1–3. The non-dimensional temperature and heat flux distri-
bution from the two models including the BDE and the DPL model,
and the Boltzmann equation has been shown in the right and the
left columns, respectively. In all cases, the DPL model is presented
with certain ratio of temperature phase lag to heat flux phase lag,
or B and a which could be computed from Eqs. (9) and (10). It is
worth noting that based on the work of Chen [1], the BDE model
is considered as an accurate approximation of Boltzmann equation
in the range of time and Knudsen numbers in which the problem is
solved. Verification of the results is based on the results obtained
from the solution of Boltzmann equation.

Fig. 1 shows the non-dimensional temperature and heat flux
from mentioned models for the Knudsen number of 0.1. Since,
the propagation of energy into the solid material is so slow and
also in order to produce observable temperature distribution, in
this case results are presented for long periods of time. It is evident
that for Kn = 0.1 the DPL model has shown better agreement, in all
points, with the BDE model especially near the boundaries which
are so important in present analysis. By comparison of the results
of Boltzmann equation [1] with predictions of DPL model, it is also
seen that at the non-dimensional time of t* = 100, the prediction of
DPL model with new boundary condition is more accurate than
BDE results. So that, the undesirable curvature noticed in BDE
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Fig. 1. Comparison of temperature (right column) and heat flux (left column) distribution obtained from BDE model and DPL with new boundary condition for different
instantaneous times and Kn = 0.1.

Fig. 2. Comparison of temperature (right column) and heat flux (left column) distribution obtained from BDE model and DPL with new boundary condition for different
instantaneous times and Kn = 1.

Fig. 3. Comparison of temperature (right column) and heat flux (left column) distribution obtained from BDE model and DPL with new boundary condition for different
instantaneous times and Kn = 10.
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results in the vicinity of the left boundary is omitted by the aim of
DPL model. As mentioned before, moving towards the steady state,
proposed DPL model has been reduced to CV model. The DPL model
has also shown good agreement in all points with the BDE model in
order to predict the heat flux value.

Fig. 2 compares the temperature and heat flux distribution
obtained from the models for the Knudsen number of 1 corre-
sponding to micro-scale heat conduction. Similar to the Knudsen
number of 0.1 by marching in time, the accuracy of DPL model pre-
diction increases relative to the BDE model. Also, it is noticed that
the accuracy of prediction of heat flux has been decreased by
increase in the Knudsen number. It should be mentioned that by
changing coefficients a and B, better agreement can be obtained.
But, in order to have unique coefficients for various cases an opti-
mum coefficient tuning has been performed. So, this model needs
an extra modification for heat flux to agree well with exact results.

In order to investigate nano-scale heat conduction, in Fig. 3 the
Knudsen number has been increased to 10. It is seen that the dis-
agreement between the BDE and the DPL models is more consider-
able especially for heat flux computation. In spite of this fact, due
to the simplicity of derivation of the DPL model formulation and
its possibility of developing to the higher dimensions, using the
Fig. 4. Comparison of temperature distribution obtained from the numerical and
DPL model with the new boundary condition is recommended by
the authors to simulate the nano- and micro-scale heat conduction.
As is obvious from Figs. 1–3, the steady state temperature and heat
flux distribution turned out to be linear. So, in all above cases for
different Kn numbers, it is easy to present a compact formula for
steady state temperature and heat flux distribution for the design
purposes of micro-electro-mechanical systems (MEMS).

Comparing analytical and numerical results, non-dimensional
temperature distribution for three different Knudsen numbers
has been plotted in Fig. 4. From this figure, it is obvious that the
analytical solution coincides with numerical results perfectly
which verifies the numerical results. The discrepancy of numerical
and analytical results is expectable and stems from the numerical
error of computing the inverse Laplace transformation and spatial
and temporal truncation errors in finite difference scheme.
6. Conclusion

This paper established a new boundary condition for transient
DPL equations of heat conduction, which was divided in two cases
of the CV equation and the general DPL equation with non-zero ra-
analytical methods for different times and (a) Kn = 0.1, (b) Kn = 1, (c) Kn = 10.
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tio of time lags, for the Knudsen numbers more than 0.1 corre-
sponding to micro- and nano-scale geometries.

Computational results of this model applied to a thin slab were
compared with the results obtained from Ballistic-Diffusive Equa-
tions and Boltzmann equation. Since, the new boundary condition
considers the effects of the boundary phonon scattering, good
agreement between the BDE and the DPL models was observed
in the vicinity of the boundaries as well as the part of the domain
that is far from the boundaries. This agreement was not seen by
employing no-jump boundary condition. It was shown that moving
towards the steady state, the CV model as an especial case of the
DPL model with temperature jump ða ¼ 1

2Þ, could be used and has
the results much more accurate than the BDE model. But, for initial
time steps, employing the DPL model with non-zero temperature
gradient phase lag is essential. It was also noticed that by solving
DPL model the predictions of the temperature distribution with re-
spect to the BDE results was improved much more than the heat
flux distribution.
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